Determining the Habitability of Exoplanets

James Mang, Carrie Zuckerman, Tristan Streichenberger, Brandon Coy, Olivia Jerram, Yasmeen Musthafa

Abstract

Given the many possible variables in the detection of life and the habitability of planets, there ust be a method implemented to efficiently process the data collected from the Kepler telescope collecting spectroscopy data, among other information regarding a particular exoplanet. Finally, these planets are determined to be habitable in accordance with the analysis, which should produce information such as the location of an exoplanet with respect to its star's habitable zone,
and the planet's possible composition. This research has made use of the NASA Exoplanet Archive, which is operated by the California Institute of Technology, under contract with the National Aeronautics and Space Administration under the Exoplanet Exploration Program.

Approximating Habitable Zones

In general, the habitable zone (HZ) refers to the area around a particular star where liguid planet being observed. An approximation of the inner and outer boundaries of the HZ is given by he equations $r_{i}=\sqrt{\frac{L}{h}}$ and $r_{o}=\sqrt{\frac{1}{3}}$, where r_{i} and r_{o} are the values of the inner and outer radius, L is the absolute luminosity of the host star, and the values 1.1 and 0.53 are constants describing stellar flux at the inner and outer radius respectively. This estimate is based on the concentration and form of of liquid water on the surface.
Fig. 1 depicts the relationship between star luminosity and the position of the HZ (increasing distance at a square root rate), while Fig. 2 displays the position of each viable planet in their respective zones ((pl_dist - lower_zone_dist) / zone_width). Most are clustered around the hner limit of the HZ Oyerall, in the dataset 39 planets are located in a favorable HZ

Equilibrium Temperature

According to a study done by Kaltenegger and Sasselov, for planets similar to Earth in size, the limits of the habitabiity zone can be can be defined by a planet's equilibrium temperature
falling between 175 K and 270 K . This range considers the temperature needed for liquid water to falling between 175 K and 270 K . This range considers the temperature needed for liquid water to
exist on the surface, given atmospheric conditions, such as the greenhouse effect, that would exist on a theoretically habitable exoplanet. Of those planets with a listed equilibrium temperature, 17 fall within the
range, as shown in Fig. 3 .
Only 4 planets satisfy the Goldiocks Zone restri and are in the viable
temperature range -Kepler 22b, Kepler 1653b, Kepler 1652b, and
TRAPPIST 1e, TRAPPIST 1e, giving these planets a high by Earth-like life.

Planet Composition

Planetary composition is an exoplanet characteristic depending on various factors -- the gases and elements during solar system formation, distance from the sun, and even proximity to other massive / dense planets (Seager 2007). Because of these
determinants, some of which may be known but have an unknown combined results, it is difficult to categorize a given planet as being likely to have a large ocean or being composed of mostly metallic compounds (Seager 2007). For this dataset, in order to improve prediction accuracy of the makeup of each planet, three models were used: comparing to a Harvard dataset mapping theoretical masses and radii to distinctions between 100% iron, 45% water planets, etc., the Birch-Murnagham EOS (Equation of State) which is a set of isothermal equations that relate planet volume to projected surface pressure and can therefore predict to some extent whether or not it is feasible for, CO_{2}, for instance, to be present in gaseous form, and tern
plots to interpret the computational ambiguities of likely solid exoplanets -- below $\sim 20 \mathrm{M}_{\mathrm{E}}$ (Zeng 2008, Seager 2007). As seen in Fig. 5 , the transition between rocky and gaseous occurs at ~ 0.11 Jupiter masses, and intermediate data poi considered Super-earths, large planets that can fall into either group (Lissauer 2004). In the Kepler dataset, 2656 planets are too small and dense to maintain a thick gaseous envelope around their cores and 1055 could be classified as gas giants. Some of the results from Model 1 classification (Harvard) which involved plotting the theoretical mass v. radius data, creating logarithmic lines of best fit, and matching the test set to these equations by associating it with the equation that was minimally distant, are shown in Fig. 6. This was not applied to all planets, but only those $<35 \mathrm{M}_{\mathrm{E}}$ because the
Fig. 7 is a graph of the mass-radius relationship between planets such that M_{s} (scaled mass) <1000 (most accurate for M_{s} <40, but still a good benchmark if $M_{s}>4$). According to the experimental EOS calculated for different substances, a study has derived an approximate power law following the format $\log _{1_{10}} \mathrm{R}_{\mathrm{s}}=\mathrm{k}_{1}+1 / 3 \log _{10}\left(\mathrm{M}_{\mathrm{s}}\right)-\mathrm{k}_{2} \mathrm{M}_{\mathrm{s}}{ }^{\mathrm{k}^{3}}$ (Seager 2007). The constants $\mathrm{k}_{1}, \mathrm{k}_{2}$ and k_{3} differ across compounds that dominate a planet's structure. Most planets lie below the expected curve values, which indicates that their radii are lower than expected and that the planets may be composed of denser materials or combinations
of iron, water, and perovskite that were not focused on in the study (Seager coos)
Fis 8 - 9 and exmples of interio composition ternary plots for the planets TR
of which have an equilibrium temperature within 175-270K, low eccentricity, and are of near Earth size and mass. The sides of the triangular diagram represent the theoretical mass fractions of iron, water, and silicate assuming that the planet in question has a tri-layer form. The MATLAB program used to determine this has its limitations; it can only handle mass parameters between $0-10 M_{E}$ and radii between $1-2 R_{E}$ which are near-Earth values (Seager 2008) Further work can include potentially extending this capability to gaseous or large rocky planets.

Eccentricity

The eccentricity of a planet's orbit can be crucial for determining habitability. If a planet's orbit is too eccentric it can lead to planets that cannot maintain liquid water year round as they move farther and closer to their hosts star.
Linsenmeier et al. (2015) studied the influence of both obliquity and eccentricity for ocean covered planets orbiting a Sun-like star on a 365 day orbit and a 24 hour day, like Earth. They found that planets with
eccentricities higher than 0.2 can only sustain surface liguid water for a part of the year. Of the planets on NASA's exoplanet archive, only 808 have eccentricities of Less than o.2. That is 21.7% of the anets that could potentially sus
liquid surface water year round.

Surface Gravitational Acceleration

Gravity is an essential aspect on all planets in terms of habiabir. Gravity influences retainment of atmospheric compounds and elements as well as the ability to survive on the planet's surface.
In a research
In a research paper at the
Universidad Politécnica de Ma was found that there is a correlation between the gravitational acceleration and the mass of the planet. urprisingly, those categorized Super-earths had a similar earth.

Future Work

Further analysis into the habitability of exoplanets should look into the atmospheric compositions of top candidates in detail, based on spectroscopy data, in order to determine if signs of water do exist on the planet. Additionally, a deeper evaluation of ome of the most promising candidates, such as Trappist-e and Kepler-22b, woit an narrowing the search for signs of life. Furthermore, we could try to incorporate tidal locking into our determination of what could be a habitable work. We could also try to get our data to be more accurate by cross referencing the NASA exoplanet database with

References

Acknowledgements

