
Exoplanet Detections with Machine Learning

 Data Processing
The list of TCEs was then used to obtain the corresponding flux time series data from the Mikulski Archive 

for Space Telescopes. Each TCEs  data was split into various FITS files for the different observation quarters. 
Most TCEs were broken into 15-18 individual FITS files. 

Each  FITS file contained two sets of flux time series data, Simple Aperture Photometry (SAP_FLUX) and 
Pre-search Data Conditioning (PDCSAP_FLUX). The PDCSAP_FLUX flux time series data was extracted from 
the FITS files because it has undergone an additional step in the Kepler pipeline which has removed long-term 
trends. Figure 1 shows a comparison of the two sets of flux time series data corresponding to KIC 6022556. As 
can be seen, SAP_FLUX demonstrates a long-term negative trend, whereas the PDCSAP_FLUX has been 
flattened and cleaned of the long-term trend.

Each TCEs  FITS files needed to be individually flattened, cleaned, and normalized before being stitched 
together. The combined flux time series was then folded using the TCEs period, which was obtained from the 
acquired metadata. The result of this is a cleaned and normalized folded light curve. Figure 2 shows the first 
time series data of KIC 6022556 (which is the same data as Figure 1). Figure 3 shows the various FITS files of 
KIC 6022556 being stitched together. Figure 4 shows the resultant folded and cleaned light curve 
corresponding to KIC 6022556.  Figures 5, 6, and 7 show the folded light curves of TCEs labelled AFP and 
NTP.

Kepler Dataset
The Kepler Exoplanet Archive was used to generate a list of Threshold-Crossing Events, along with required 

metadata. A Threshold-Crossing Event (TCE) is a sequence of transit-like features in the flux time series of a 
given target that resembles the signature of a transiting planet to a sufficient degree that the target is passed on 
for further analysis. 

The datasets size and labelled TCEs made the Q1-Q17 DR24 Kepler dataset ideal for using with ML. The 
dataset contains TCEs labelled as PC (Planetary Candidates), AFP (Astrophysical False Positives), NTP 
(Non-Transit Phenomenon), and UNK (Unknown). TCEs labelled UNK were removed. PCs were relabelled as ‘1’ 
for planet candidate and those labelled either AFP or NTP were relabelled as ‘0’ for non-planet candidates. The 
dataset included 15,737 total TCEs. This was composed of 3,600 PCs, 9,596 AFPs, and 2,541 NTPs.

Abstract 
Telescopes such as the Kepler Space Telescope are collecting vast amounts of data. Manually sifting through 

these large datasets presents a problem when attempting to find exoplanet candidates within the thousands of 
generated light curves. Machine Learning (ML) techniques can be implemented to automatically look for patterns 
correlated to planetary candidates. Before doing so, data must be processed and normalized to be properly  input 
into a ML model. Two different approaches were taken when designing the ML model. Initially, an SVM (support 
vector machine) implementation was created. After poor results, the ML approach pivoted from SVMs to CNN 
(Convolutional Neural Networks.) The final CNN yielded an accuracy of ~81.8%. Further modifications to the 
method used for data processing and refining the CNN model could potentially improve these results.

SVM Model
Before diving into Convolutional Neural Networks (CNNs), the problem of classifying interstellar objects initially used Support Vector 

Machines  (SVMs)  and Fourier Transforms. Instead of folding light curves, a Fast Fourier Transform was used on flux data in attempt to split 
light frequencies of exoplanets versus other objects such as binary star systems. However, the accuracy of this method was only ~40%. The low 
accuracy of this method can be explained by the heavy amount of noise that exists in exoplanet datasets and star flux datasets, a drawback of 
SVMs. Furthermore, a lack of consistent sinusoidal variations within the datasets could be the culprit to poor performance with Fast Fourier 
Transforms, as certain Fourier Techniques rely more so on sinusoidal data. Additionally, noise, high levels of gaps in data, and lack of consistency 
could all play a role in the disadvantage of using Fourier Transforms in this case. 

For the SVM, we imported the data and did  basic processing such as normalizing. Then, the Fast Fourier Transform method was used on the 
data, and finally the SVM model was deployed on the data. Afterwards, hyperparameter tuning was conducted, however rarely did tuning make 
large differences to the accuracy in the end. An interesting point to be made is that drastic changes (such as not normalizing vs normalizing the 
data or applying filters) did not correlate to large drastic changes in accuracy. 

A more fitting pipeline for this task is to replace Fourier Transforms with phase folding techniques, allowing non-sinusoidal and high noise 
data to be worked on, as well as using a CNN instead of an SVM. Our accuracy greatly improved after changing methods. 

Acknowledgements
We would like to thank Lauren Koch and Tristen Streichenberger for their support throughout this project, as 
well as Arjun Savel and Megan Ansdell.

Antonio Gordillo Toledo, Gavin Groode, Jie Qiu, Jai Yarlagadda
University of California Berkeley Physics Department, Undergraduate Lab at Berkeley

References
Ansdell, M., Ioannou, Y., Osborn, H. P., Sasdelli, M., Smith, J. C., … Caldwell, D. (2018). Scientific Domain 

Knowledge Improves Exoplanet Transit Classification with Deep Learning. The Astrophysical Journal, 
869(1), L7. https://doi.org/10.3847/2041-8213/aaf23b

Mikulski Archive for Space Telescopes http://archive.stsci.edu/kepler/
NASA Exoplanet Archive. Caltech. https://exoplanetarchive.ipac.caltech.edu.
Shallue, C. J., & Vanderburg, A. (2018). Identifying Exoplanets with Deep Learning: A Five-planet Resonant 

Chain around Kepler-80 and an Eighth Planet around Kepler-90. The Astronomical Journal, 155(2), 94.
Seader, S., Jenkins, J. M., Tenenbaum, P., Twicken, J. D., Smith, J. C., Morris, R., … Klaus, T. C. (2015). 

DETECTION OF POTENTIAL TRANSIT SIGNALS IN 17 QUARTERS OF KEPLER MISSION DATA. The 
Astrophysical Journal Supplement Series, 217(1), 18. https://doi.org/10.1088/0067-0049/217/1/18

Future Work
Accuracy of the CNN model could be improved through various modifications to both the data cleaning 

process and CNN model itself. The period of each TCE (used to fold the flux time series data) was obtained 
from the metadata provided from the Exoplanet Archive but manually finding each TCEs period through a 
more rigorous method could improve accuracy. The processing time of each TCE would increase but yield a 
better folded light curve. Another potentially helpful change would be to remove the data of multiple planet 
candidate transits from each TCE, as many TCE light curves contain more than one transit. In addition to this, 
creating another view of the light curves could help find different patterns that are missed by inputting a single 
light curve view into the model. For every TCE, only one global view light curve was generated, but adding a 
‘zoomed in’ local view might help detect otherwise easily missed patterns. One final change would be to add an 
additional class to the labels, so that the model could be used to distinguish PCs, AFPS, and NTP. The current 
model makes no distinction between AFPs and NTPs.  
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CNN Model
       In a convolutional neural network, we create multiple layers of “neurons.” Each “neuron” in the layer 
processes only a small part of the layer before it. This allows the network to distinguish shapes and edges 
through the contrast neighboring neurons detect. Like most neural networks, having multiple layers allows for 
a more fine-tuned solution, where output from different parts of the image can be analysed together when 
processed by the additional layers. To make sure all the data is processed, the final layer is densely connected. 
It is primarily this processing of edge and shape that led us to switch from an SVM to a CNN. This edge 
detection helps the CNN detect the dip in the light intensity with much more accuracy than the SVM could.

Initially, we tried to to adapt a 2D image classification model with two convolutional layers, two pooling 
layers, and a fully connected layer. Since our input data are 1D, we first replaced all conv2D functions with 
conv1D, we then tweaked the batch size, stride, and the layer dimensions to accommodate our input data size, 
which consists of 2001 points. We also dropped the max pooling layers. Our final model has a fully connected 
layer as well as two convolutional layers with 32 and 64 output channels, respectively. However, accuracy did 
not improve as we trained our data with this model. 

A previous research paper outlined a successful model in similar application and the approach was shifted 
to emulating a similar model (Shallue 2018). The paper referred to a CNN model that received two views of the 
light curves as input; a global view and a local view of the light curves would help distinguish long-term and 
short-term patterns in the data. As for the model itself, a simplified version was created to get an initial 
training run. The model went through various iterations before arriving at something similar in structure to 
the one outlines in the paper. The model adapted from the 2D Image Classifier reached an accuracy of 75.73% 
and the model based off the paper improved accuracy to 78.72%. In addition to the convolution, pooling, and 
dense layers, it was found that adding dropout layers helped increase both the accuracy and  the time it took to 
reach the highest accuracy, which was 81.81% at the end of the project. This maximum accuracy did not 
emulate the ones in the paper. The step in the process that would most benefit from revising would likely be 
data processing.
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