
Relating Electromagnetic Waves to Light

Theory/Set-up
Using the following circuit as a model3, we can derive the electric and magnetic forces acting 
on the circuit.

This circuit consists of two capacitors (C1 and C2), and two rings with current traveling in 
the same direction through them. The circuit is driven at a voltage ε0cos(2πft), where f is the 
frequency. The entire circuit is set to act as a seesaw that balances when average of the 
magnetic and electric forces are equal4. By applying Gauss’ and Ampere’s laws, we can arrive 
at the following expressions for the magnetic and electric forces.

Equating the average of both forces and solving for 1 /μ0ε0, we get

Experimentally, we need to find the right frequency such that the circuit is balanced. This 
allows us to find 1 /√( μ0 ε0 ) by plugging in our other measured values.

Background
We started by studying a simple wave (a vibrating string) to derive the wave equation and 
the general form of solutions2. Then, by using vector identities and the Laplacian on 
Maxwell’s equations, we showed that the electric and magnetic fields take the form of the 
wave equation. Simply by comparing coefficients between the general wave equation and 
the electromagnetic equations, we see that the velocity squared of electromagnetic waves is 
1/μ0ε0.

Introduction 
The permittivity and permeability of free space, ε₀ and μ₀, are important physical constants 
due to their use in relating the strength of the electric and magnetic fields to the medium they 
permeate. In a similar way that we can relate the properties of a string to the speed of a wave 
traveling along it, we will use this idea to relate them to the speed of light in a vacuum, c. In 
this project we seek to determine and relate these constants to the speed of light using a 
derived setup and simulation. 
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Future Work
As we were unable to actually conduct the physical experiment, a future project could be 
building the theoretical set-up. From this, we could match the experimental value for the 
frequency vs. the simulation value. 

Another theoretical result we found was that if we increased the number of turns in the 
inductor (N), the balancing frequency would decrease by N. This could be used to study the 
sensitivity of the circuit as well. 

Simulation
We modeled our set-up in Python as a seesaw with an electric force on the left end, identical 
to that of the parallel plate capacitor, and a magnetic force on the left end, identical to that of 
the rings of wire.  Since, we have functions for each force in terms of frequency and time, we 
can track the height positions of each end of the seesaw using a bit of calculus and natural 
initial conditions (we are considering the height of the tip of the fulcrum to be height zero). 

We then simply define some position functions of each end that take time and frequency as 
arguments, plug in any range of time, and test as many frequencies as we want. 

In addition to this we also simulated the apparatus using Solidworks to see what the it might 
look like as it moves. We created a scale-like object and had the electric force pulling down 
on one end and the magnetic force pulling down the other. We were able to plug in the 
expressions for them as they varied over time to simulate the forces. This has some 
drawbacks as the force stays the same even if one end is very far from the initial position, and 
the force always stays normal to the plates, which is not what would happen in real life. 
However, we should be able to see approximately what happens at frequencies where it does 
not oscillate much, and initially what happens at frequencies that are incorrect before the 
apparatus moves very far.

Figure 4. Identical to Figure 1, but this 
shows long term behavior.

Figure 1. Oscillation of right and left end 
when the frequency is the one determined 
by using the previous equation.

Figure 2. Divergence of right and left ends 
when the correct frequency is raised by 
0.01 Hz.

Limitations of our Experiment
We initially anticipated this project to be primarily experimental, as it involves a physical 
circuit model from which we derive our theory and data. In light of the recent global pandemic 
and cancellation of all in-person activities on the Berkeley campus, we were not able to finish 
setting up and collecting data from the apparatus. We decided to do a theory-based project in 
which we represent our apparatus with simulations and graphs using expected values relevant 
to the calculation of the forces. However, the capability of our simulation falls short of that of 
the physical apparatus. In the Solidworks simulation the forces were exaggerated to illustrate 
the motion by using a very high voltage, so it would harder to spot the correct frequency in real 
life. In addition, it does not completely capture the motion as the further the plates or rings are 
from each other, the smaller the attractive force between them. This is why the simulation 
shows the apparatus spinning rather than merely tipping, in addition to the fact that they stay 
normal to the plate.

Results

Figure 3. Identical to Figure 2, but the 
correct frequency is lowered by 0.01 Hz.

The frequency for Figure 1, is obtained by assuming the following: a = 0.2 m, s = 0.01 m, b/h = 10, the 
capacitance of the second capacitor is 100 micro-Farads, and the amplitude of the voltage is 10 volts.. 
These values are obtained by what would have been available to us if we had obtained all the materials 
from the materials list we made in order to build the system. Looking at the scale of the y-axes on each 
graph, the correct frequency forces the system to oscillate at a magnitude of 10-13 meters, while the 
“off”-frequencies diverge at a magnitude of 10-7 meters. In particular, Figures 1-3 show that the 
teetering is very sensitive to the frequency of the voltage. Figure 4 shows Figure 1 at a larger time 
scale, where the oscillation begins to diverge. To explain this, let’s graph a couple more  things: 

Figure 2-1: Ideal theoretical Frequency. Electric 
force acts on the blue and magnetic on the red. 
Forces are exaggerated to illustrate the motion

Figure 2-2: 20Hz below ideal frequency.  Electric 
force acts on the blue and magnetic on the red. 
Forces are exaggerated to illustrate the motion

 

Figure 2-3: 40Hz above the ideal 
frequency.  Electric force acts on the blue 
and magnetic on the red. Forces are 
exaggerated to illustrate the motion

Figure 3-1: Representation of forces.  
(Not to scale) [5]

Figure 3-2: Representation of forces.  
(Not to scale) [5]

Figure 3-1: Representation of forces. 
Electric force is blue and magnetic is 
red. (Not to scale) [5]

In the set up here, the electromagnetic forces constantly act perpendicular to the plates, and to 
the right a scaled down graph of the forces is shown to give an idea of how the forces oscillate. 
We can see that at the correct frequency the amplitudes are equal to each other. This causes very 
small oscillations on the apparatus that balance out. When it is too large, the magnetic force 
dominates and pulls the red plate down, causing the apparatus to tip over. When it is too small, 
the electric force dominates causing it to tip the other way. This indicates that if we had built our 
apparatus as initially intended we would indeed have been able to find the correct frequency by 
observing how the apparatus oscillates. It should be noted that in this simulation a much higher 
voltage than is realistic was used so that the oscillations were visible. In reality, it would likely 
appear still.

Figure 5. Correct frequency divided by 
10, set to a time scale of 1000 seconds.

Figure 6. Correct frequency, set to a time scale 
of about 16 centuries!

This seems to tell us that no matter what frequency we use to alternate the voltage, the ends of the 
seesaw will always diverge and orbit the pivot faster and faster. The correct frequency seems to 
maximize the system's resistance to diverge. Here are a few more graphs, whose behavior further 
supports this conclusion:

Figure 7. Identical to Figure 
2, but time scales to 10^6 
seconds.

Figure 8. Identical to 
Figure 3, but time scales 
to 10^6 seconds.

Figure 9.  Correct frequency 
times 10 at a time scale of 
10^4 seconds.


