
The Sun, being a giant fusion reactor floating approximately 1.5x10^8km away from Earth, is a naturally chaotic system. Every 

so often, solar activity produces events known as solar flares, which are explosive releases of magnetic energy  that progagtes 

out from the Sun and into the solar system. To scientists on Earth these events pose a looming threat to an increasingly 

technology dependant humanity, and pose a poignant question: are there reliable ways of detecting these events? As for the 

purpose of this poster, the question our group aims to answer is: can Neural Nets be trained to detect solar flares when fed 

magnetograms (images of solar flare’s magnetic intensity) as its input data, and separate them from non-events? Following 

the example of Nizhisuka et al.’s work, and using data publicly available from the JSOC, we found that the process is well 

founded and produces results.   

The Sun’s plasma (charged gas) is constantly in motion, producing magnetic fields. 
Sunspots, or convection currents breaking the sun’s surface, are associated with strong 
magnetic field eruptions; if the magnetic fields “break” 
because of torsion, radiation and plasma are released,
causing solar flares and coronal mass ejections. These 
solar flares can disrupt our radio systems and coronal 
mass ejections are able to elicit widespread power 
outages. Although it may be too chaotic a system to 
manually predict solar flares from magnetic field 
behavior, machine learning presents the opportunity 
to make such predictions.

Neural networks are a way to map an input to an output. By creating many layers of 
connections between input and output variables,
users have a set of parameters (connections) that 
can be adjusted to correctly map an input to its 
output. By training the network with many inputs 
that have known outputs, the system adjusts itself 
to become optimized, developing a network that 
can be applied to new inputs.

We used the JSOC as our source for acquiring magnetograms. In order to pull thousands of 
magnetograms, we developed a script that can pull and download many magnetograms of 
desired specification from the JSOC. With the script, we are able to indicate which active 
region and helicity from which to pull for our positive data. For our negative data, we pulled 
random magnetograms from random active region sites. In order to confirm that our 
negative data that we pulled was indeed negative, we checked the data against our Solar 
Flare.csv file and disregarded every match we found. After confirming, we checked the 
dimensions of both positive and negative magnetograms and found that they differed vastly, 
which will cause issues for our Neural Network. Thus, we padded each image in order to 
make each image the same size. There were some images that were too large for processing; 
those images were left out. After parsing and padding through all the data, we feed our data 
into the Neural Network.
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We constructed a convolutional neural network, and implemented limited data consisting of 
magnetograms both associated with flare event times and regions, and unrelated to solar 
events. In the second regime, which consisted of a mixture of Active Solar regions, we 
produced testing accuracies of 50% consistently, giving no indication that our data-limited 
network can predict solar events. Our development of a network and the success of similar 
projects in literature suggest that with more work and more comprehensive data, a reliable 
detection system is possible. This project stands as a proof of concept for utilizing Neural 
Networks and image processing to examine Astronomical data for event detection.  
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● Build a Neural Network to be able to predict whether a solar flare will occur within 24 
hours of when the input magnetogram was captured

● Explore Long Short-Term Memory and Generative Adversarial Network  architectures  to 
facilitate predictive analysis

● Refine our understanding of available solar data products, as well as how to query this 
data in an automotive process, to ensure the validity and effectiveness of our positive and 
negative data

● Experiment with more preprocessing techniques such as Low-Rank Approximation for 
our input image data
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The Sun, a giant fusion reactor ~1.5x10^8 km from Earth, is a naturally chaotic system. 
Periodically, explosive releases of magnetic energy from the sun’s surface, events known as 
solar flares, propagate out into space. On Earth, solar flares pose a looming threat to an 
increasingly technology-dependant humanity, and pose a poignant question: are there 
reliable ways of detecting these events? This poster addressed if Neural Nets can be trained 
to detect solar flares with magnetograms from non-events? We find that this process is well 
founded in “Deep flare net (Defn) model for solar flare prediction”[4] as their system 
produces successful detections ranging from 82-96% depending on Solar Flare size. After 
collecting 100+Gb of magnetograms from the JSOC, and constructing a Neural Net, we had 
detection accuracy of 50% using B-class solar flares.    

Having successfully queried and collected the data from the JSOC, a proper analysis of our 
collection of images can begin. Referencing DeepBlue’s[2] list of magnetograms, we can 
parse through the negative data to double check its integrity before we formally create 
training and test sets fit for Keras’s image processing methods: this is done by matching the 
date of the image to the 12k confirmed solar flares we know took place. Due to the limited 
amount of Ram allotted to us through Google Colab Notebooks, of our total data set we 
consider a subset of our collected data set consisting of 200 images, split into 100 flare 
images and 100 ‘blank’ images at a time. With preprocessing done, all that is left is to 
construct and run the Neural Network. Using the Keras framework within Tensorflow, our 
network is a standard boolean classifier meant to separate solar flares from regular solar 
activity. The structure of our Neural Net can be seen above. Due to the nature of Neural 
Networks, we don’t have exact knowledge on how the linear algebra going on under the 
hood directly translates to picking a solar flare out of a collection of images - but the 
justification for its functioning is well established mathematically. 
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Conclusion

We conducted two main experiments in our analysis: the first involved a negative data set 
which contained image from one NOAA region exclusively, and the second contained a broader 
array of images taken from several NOAA regions. The first analysis produced consistent 
results, our training accuracy hovered at about 89% each epoch with a batch size of 10, and our 
test results were  99% accurate. On first glance, this would appear to mean that Neural Nets are 
an excellent way of detecting solar flares - but, this is directly challenged by our second data 
set. In the second set, our training accuracy was as high as 60%, but testing accuracy struggled 
to reach 50% constantly.
What this ultimately means is that our neural net detected that images in the first set which were 
negative all looked very similar (as they were all of the same region of the Sun), and thus, 
weeding out these images mathematically proved rather trivial. The more complex case, despite 
its lower accuracy, is actually more promising. Given that we are significantly RAM/data 
limited, it stands to reason that with more data we can achieve more accurate results.  


