
A major area of improvement would be obtaining more accurate labels. The GAIA 
dataset has large uncertainties for many objects. We could preprocess the data to 
select only stars with reliable ages, or use other datasets with age estimates. In 
addition, diversifying our age sources could help avoid potential bias or overfitting 
from the way our labels were obtained, e.g. using the KEPLER dataset, which would 
lessen the chance that our model memorizes the FLAME model used by GAIA DR3.

Further work can also be done to evaluate the utility of our model, i.e. comparing the 
estimates obtained from our model to traditional methods. We could also evaluate 
the resource cost and accessibility of the data we use in our model. We could also 
use our model to obtain ages for stars which currently have no age estimate in GAIA 
DR3, which could help identify new patterns in our galaxy and beyond.
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Stellar age is an important evolutionary parameter which is difficult to estimate. Our 
group used machine learning (ML) as a stellar age estimation technique, a task 
which has been demonstrated by recent studies [1]. Using the GAIA Data Release 3 
(DR3) dataset [2], we constructed a deep neural network (DNN) stellar age 
estimation model with TensorFlow. The model produces accurate (mean absolute 
error = 0.8 Gyr) age estimates during testing, demonstrating the efficacy and 
feasibility of an computationally inexpensive stellar age estimation technique.

Our ML model proves to be a suitable method in classifying stellar age with a 
reasonable accuracy (MAE = 0.8). We can use the DNN model to extrapolate to 
larger datasets comprising varying stellar properties to extract further patterns. Our 
predictions could also become more accurate with simply adding more computing 
power, without requiring significant alteration to our training process. The use of 
machine learning to classify and predict stellar age shows promise for the future. 
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Introduction
Accurate stellar ages are crucial to understand the evolution and structure of stars 
and galaxies. Traditional estimation methods include isochrone fitting, 
gyrochronology, and asteroseismology. Selecting the appropriate method depends on 
the availability and cost of the different types of data required for each method. 
Using a combination of several different methods can improve the accuracy of age 
estimation if all required data is obtainable [3]. The GAIA DR3 dataset uses 
FLAME, a stellar age and mass estimation model based on an enhanced version of 
isochrone fitting using luminosity, metallicity, etc. in its estimate [4].

Machine learning has long been used for pattern recognition, including, recently, as a 
tool to estimate stellar age. Deep neural networks are the most commonly used type 
of model in ML, using layers of neurons with both linear and nonlinear activations 
to capture a wide range of possible behavior. They use gradient descent to minimize 
a loss function, which typically represent the error or utility of a model. 
TensorFlow/Keras is a widely used ML library which contains efficient utilities for 
building and training DNNs.

Figure 1: Correlation matrix of stellar age and training variables

Figure 2: Heatmap of age labels vs model predictions with line of best fit.

Figure 3: Loss function (mean 
absolute error, Gyr) during training

Figure 4: Error of age from our DNN to 
GAIA DR3

Algorithm & Performance Metric
Our predictive model was built with 4 dense layers with RELU activations (shapes 
128, 100, 64, 1) and compiled using the Keras framework. We used the Adam 
optimizer with the mean absolute error (MAE) loss function. We trained the model 
for 500 epochs with early stopping with an initial learning rate of 1e-3 and reduced 
learning rate on plateau. The model's accuracy during training was evaluated by 
plotting the loss. After training, error analysis on the test split data's ages versus the 
model-predicted ages was performed to check against overfitting and assess the 
quality of our model.

Data Acquisition

Discussion
Our mean absolute error was 0.80 Gyr, which is comparable to the results from Bu 
2020 (0.16-1.60 Gyr), who used a Gaussian Process Regression technique instead. 
However, our mean relative error (defined as |label-predicted|/label) was much 
higher, at 28%, compared to 9% for Bu et al. [1]. This may be due to the large 
differences in age predictions at small ages, which can be seen as outliers in the 
heatmap, which are weighted more in mean relative error compared to mean 
absolute error. Changing the number of layers, the number of neurons per layer, and 
the parameters used in training largely did not affect the performance of the model, 
so changing the type of model used or performing more data preprocessing may be 
more effective ways to improve accuracy.

All of our data was sourced from GAIA DR3 and accessed via Astroquery API. 
From this data, we retrieved the parameters listed in Figure 1 for 200,000 stars. The 
age column became the labels for our model. The rest of the data was normalized 
and we replaced all NaN values in our dataset with -99. The resulting array was then 
shuffled and partitioned into training, validation, and test datasets. 

Figure 2: Scatterplot of predicted vs actual ages in test split, with color indicating 
probability density (scale is relative and logarithmic with floor of 1e-3)


